3.2 비지도학습비지도 학습 : 레이블이 필요하지 않으며 정답이 없는 상태에서 훈련시키는 방식 비지도 학습에는 군집(clustering)과 차원 축소(dimensionality reduction)가 있다.군집은 각 데이터의 유사성(거리)을 측정한 후 유사성이 높은(거리가 짧은) 데이터끼리 집단으로 분류하는 것이다.차원 축소는 차원을 나타내는 특성을 줄여서 데이터를 줄이는 방식이다. 구분군집차원 축소목표데이터 그룹화데이터 간소화주요 알고리즘K-평균 군집화(K-Means)주성분 분석(PCA)예시사용자의 관심사에 따라 그룹화하여 마케팅에 활용데이터 압축중요한 속성 도출3.2.1 K-평균 군집화왜 사용할까?→ 주어진 데이터에 대한 군집화 언제 사용하면 좋을까?→ 주어진 데이터셋을 이용하여 몇 개의 클러스터를 ..